Impacts of
Sediment Loading
and
Siltation
in the GBE

Fred Short, JEL, UNH

Seagrass in the Great Bay Estuary

Monitoring Eelgrass cover and biomass in the Great Bay (Figure 17)

Data Source: UNH Seagrass Ecology Group

GBE eelgrass decline

Causes of current eelgrass decline in GBE

- Reduced water clarity
 - Sediment loading
 - Nutrient loading
 - Siltation from dredging
 - Cumulative impacts

Sedimentation

__

Massive land clearing and deforestation in Malaysia

Sedimentation - Road construction in Palau

Eelgrass daily growth at 2 meters depth for 9 days in July with different light extinction values (K) replotted vs. % light.

Short, F.T., D.M. Burdick and J.E. Kaldy. 1995. Mesocosm experiments quantify the effects of eutrophication on eelgrass, *Zostera marina* L., Limnology and Oceanography 40:740-749

Water quality and light

NH State of the Estuary Report 2006

Suspended solids concentrations measured at Adams Point at low tide (Figure 7)

Data Source: UNH Jackson Estuarine Laboratory

Dissolved inorganic nitrogen concentrations measured at Adams Point at low tide (Figure 6)

Data Source: UNH Jackson Estuarine Laboratory

Fig 1. Donald Keirstead and Jim Turenne of USDA-NRCS extracting sediment cores from the Bellamy River with a standard Vibracore™ mounted to a shallow-draft pontoon boat. *Photo: Gregg Moore*

Fig 2. Cross section of sediment core sample from the Bellamy River. A buried shell layer is evident just below 30cm. *Photo: Donald Keirstead*

Suspended solids concentrations measured at Adams Point at low tide (Figure 7)

Data Source: UNH Jackson

Estuarine Laboratory

Percent of land area covered by impervious surfaces in the coastal watershed in 1990, 2000, and 2005 (Figure 19)

Data Source: UNH Complex Systems Research Center

Figure 6: Percent impervious surfaces in coastal watersheds in 2005

Sediment Loads

Sediment Yield from Watersheds

Sediment Loads from WWTFs

Note: The measured load for the Cocheco River was 8,000 lb/day. The WWTF loads are all much smaller than the river loads.

Total Suspended Solids

Statistically Signficant Trends

TSS = 0.209 * YEAR -413 Percent Change 1992-2004 = 76%

Dissolved inorganic nitrogen concentrations measured at Adams Point at low tide (Figure 6)

Data Source: UNH Jackson

Estuarine Laboratory

NHEP ENVIRONMENTAL INDICATOR REPORT WATER QUALITY, 2006

Chapmans Landing in the Squamscott River

Nitrogen, Nitrate + Nitrite as N

Statistically Signficant Trends

Nitrogen, Nitrate+Nitrite as N = 0.00428 * YEAR - 8.440 (P=0.005)

Percent Change 1991-2004 = 63%

Figure 30: Total nitrogen loads to the Great Bay and Upper Piscataqua River estuaries by source category assuming 50% of WWTF loads in the lower Piscataqua River enter the system

Chlorophyll-a

Statistically Signficant Trends

Chlorophyll-a = 0.124 * YEAR - 243.9

Percent Change 1988-2004 = 76%

The Problem of Sediment Loading and Reduced Water Clarity

Estuarine Engineering

Channel Dredging

